Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.059
Filtrar
1.
Breast Cancer Res ; 26(1): 40, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459598

RESUMO

BACKGROUND: 99mTc radiolabeled nanobody NM-02 (99mTc-NM-02) is a novel single photon emission computed tomography (SPECT) probe with a high affinity and specificity for human epidermal growth factor receptor 2 (HER2). In this study, a clinical imaging trial was conducted to investigate the relationship between 99mTc-NM-02 uptake and HER2 expression in patients with breast cancer. METHODS: Thirty patients with pathologically confirmed breast cancer were recruited and imaged with both 99mTc-NM-02 SPECT/computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. According to the treatment conditions before recruitment, patients were divided into two groups, the newly diagnosed group (n = 24) and the treated group (n = 6). The maximal standard uptake value (SUVmax) of 18F-FDG and SUVmax and mean SUV (SUVmean) of 99mTc-NM-02 in the lesions were determined to analyze the relationship with HER2 expression. RESULTS: No meaningful relationship was observed between 18F-FDG uptake and HER2 expression in 30 patients with breast cancer. 99mTc-NM-02 uptake was positively correlated with HER2 expression in the newly diagnosed group, but no correlation was observed in the treated group. 99mTc-NM-02 uptake in HER2-positive lesions was lower in those with effective HER2-targeted therapy compared with the newly diagnosed group. 99mTc-NM-02 SPECT/CT detected brain and bone metastases of breast cancer with a different imaging pattern from 18F-FDG PET/CT. 99mTc-NM-02 showed no non-specific uptake in inflamed tissues and revealed intra- and intertumoral HER2 heterogeneity by SPECT/CT imaging in 9 of the 30 patients with breast cancer. CONCLUSIONS: 99mTc-NM-02 SPECT/CT has the potential for visualizing whole-body HER2 overexpression in untreated patients, making it a promising method for HER2 assessment in patients with breast cancer. TRIAL REGISTRATION: NCT04674722, Date of registration: December 19, 2020.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Receptor ErbB-2 , Feminino , Humanos , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339219

RESUMO

Monoclonal antibody (mAb)-based and/or cell-based immunotherapies provide innovative approaches to cancer treatments. However, safety concerns over targeting normal cells expressing reactive antigens still exist. Therefore, the development of cancer-specific mAbs (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy is required to minimize the adverse effects. We previously screened anti-human epidermal growth factor receptor 2 (HER2) mAbs and successfully established a cancer-specific anti-HER2 mAb, H2Mab-250/H2CasMab-2 (IgG1, kappa). In this study, we showed that H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells in flow cytometry. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, recognized both breast cancer and normal epithelial cells. We further compared the affinity, effector activation, and antitumor effect of H2Mab-250 with trastuzumab. The results showed that H2Mab-250 exerted a comparable antitumor effect with trastuzumab in the mouse xenograft models of BT-474 and SK-BR-3, although H2Mab-250 possessed a lower affinity and effector activation than trastuzumab in vitro. H2Mab-250 could contribute to the development of chimeric antigen receptor-T or antibody-drug conjugates without adverse effects for breast cancer therapy.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Xenoenxertos , Receptor ErbB-2/imunologia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 29(17): 3256-3258, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428103

RESUMO

A vaccine targeting HER2, a nonmutated but overexpressed tumor antigen, readily primed T cells for ex vivo expansion and adoptive transfer with minimal toxicity. This regimen led to intramolecular epitope spreading in a majority of patients and offers a treatment modality that may improve outcomes for patients with metastatic breast cancer expressing HER2. See related article by Disis et al., p. 3362.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Humanos , Feminino , Linfócitos T/imunologia , Neoplasias da Mama/patologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Antígenos de Neoplasias/imunologia
4.
JAMA Oncol ; 9(4): 490-499, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602784

RESUMO

Importance: Both tumor-infiltrating lymphocytes (TILs) assessment and immune-related gene expression signatures by RNA profiling predict higher pathologic complete response (pCR) and improved event-free survival (EFS) in patients with early-stage ERBB2/HER2-positive breast cancer. However, whether these 2 measures of immune activation provide similar or additive prognostic value is not known. Objective: To examine the prognostic ability of TILs and immune-related gene expression signatures, alone and in combination, to predict pCR and EFS in patients with early-stage ERBB2/HER2-positive breast cancer treated in 2 clinical trials. Design, Setting, and Participants: In this prognostic study, a correlative analysis was performed on the Cancer and Leukemia Group B (CALGB) 40601 trial and the PAMELA trial. In the CALGB 40601 trial, 305 patients were randomly assigned to weekly paclitaxel with trastuzumab, lapatinib, or both for 16 weeks. The primary end point was pCR, with a secondary end point of EFS. In the PAMELA trial, 151 patients received neoadjuvant treatment with trastuzumab and lapatinib for 18 weeks. The primary end point was the ability of the HER2-enriched subtype to predict pCR. The studies were conducted from October 2013 to November 2015 (PAMELA) and from December 2008 to February 2012 (CALGB 40601). Data analyses were performed from June 1, 2020, to January 1, 2022. Main Outcomes and Measures: Immune-related gene expression profiling by RNA sequencing and TILs were assessed on 230 CALGB 40601 trial pretreatment tumors and 138 PAMELA trial pretreatment tumors. The association of these biomarkers with pCR (CALGB 40601 and PAMELA) and EFS (CALGB 40601) was studied by logistic regression and Cox analyses. Results: The median age of the patients was 50 years (IQR, 42-50 years), and 305 (100%) were women. Of 202 immune signatures tested, 166 (82.2%) were significantly correlated with TILs. In both trials combined, TILs were significantly associated with pCR (odds ratio, 1.01; 95% CI, 1.01-1.02; P = .02). In addition to TILs, 36 immune signatures were significantly associated with higher pCR rates. Seven of these signatures outperformed TILs for predicting pCR, 6 of which were B-cell related. In a multivariable Cox model adjusted for clinicopathologic factors, including PAM50 intrinsic tumor subtype, the immunoglobulin G signature, but not TILs, was independently associated with EFS (immunoglobulin G signature-adjusted hazard ratio, 0.63; 95% CI, 0.42-0.93; P = .02; TIL-adjusted hazard ratio, 1.00; 95% CI, 0.98-1.02; P = .99). Conclusions and Relevance: Results of this study suggest that multiple B-cell-related signatures were more strongly associated with pCR and EFS than TILs, which largely represent T cells. When both TILs and gene expression are available, the prognostic value of immune-related signatures appears to be superior.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Linfócitos do Interstício Tumoral , Receptor ErbB-2 , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Imunoglobulina G/imunologia , Lapatinib/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Terapia Neoadjuvante , Prognóstico , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Transcriptoma , Trastuzumab/uso terapêutico , Resultado do Tratamento , Perfilação da Expressão Gênica , Ensaios Clínicos Controlados Aleatórios como Assunto , Paclitaxel/uso terapêutico
5.
J Med Chem ; 65(22): 15123-15139, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36351049

RESUMO

To enhance the affinity of the human epidermal growth receptor 2 (HER2) targeted peptide developed previously, bispecific fusion peptides P1GCGT1 and P1GCGCGT1 were designed using an in silico approach. Molecular dynamic simulation showed that both peptides strongly interacted with HER2 domains II and IV. Compared with peptides targeting each single domain, P1GCGT1 and P1GCGCGT1 could bind to HER2 more significantly and targeted HER2-positive cells specifically. Additionally, both peptides were used to generate peptide-drug conjugates with camptothecin (CPT), among which I-1 and I-4 were screened for enhanced cellular activity and selectivity. Biological evaluation demonstrated that I-1 and I-4 induced cell apoptosis, promoted cell cycle arrestin S-phase, and inhibited Topo I activity. The binding affinity assay and confocal analysis revealed that I-1 and I-4 were effective at targeting HER2. Moreover, I-1 and I-4 showed better stability than single targeting peptide and presented enhanced antitumor activity and safety than CPT in tumor-bearing mice.


Assuntos
Neoplasias da Mama , Peptídeos , Receptor ErbB-2 , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Camundongos Nus , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
6.
Sci Rep ; 12(1): 10461, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729189

RESUMO

HER-2 targeted therapies, such as monoclonal antibodies (mAbs) and CAR-T cell therapy have been applied in the treatment of various of cancers. However, the anti-HER2 CAR-T cell therapy are limited by its expensive production procedure and fatal side effects such as cytokine storm or "On target, off tumor". The application of anti-HER2 mAbs to the soild tumor are also plagued by the patients resistant with different mechanisms. Thus, the recombinant protein technology can be presented as an attractive methods in advantage its less toxic and lower cost. In this study, we produced a HER-2-targeting recombinant protein, which is the fusion of the anti-HER-2 single chain fragment variable domain, CCL19 and IL7 (HCI fusion protein). Our results showed that the recombinant protein can induce the specific lysis effects of immune cells on HER-2-positive gastric tumor cells and can suppress gastric tumor growth in a xenograft model by chemotactic autoimmune cell infiltration into tumor tissues and activated T cells. Taken together, our results revealed that the HCI fusion protein can be applied as a subsequent clinical drug in treating HER-2 positive gastric tumors.


Assuntos
Quimiocina CCL19 , Interleucina-7 , Receptores de Antígenos Quiméricos , Proteínas Recombinantes de Fusão , Neoplasias Gástricas , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Quimiocina CCL19/genética , Quimiocina CCL19/farmacologia , Humanos , Interleucina-7/genética , Interleucina-7/farmacologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 12(1): 3020, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194100

RESUMO

Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Expressão Gênica/genética , Fragmentos de Imunoglobulinas/uso terapêutico , Radioisótopos do Iodo/farmacologia , Radioisótopos do Iodo/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Immunol ; 13: 828386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154149

RESUMO

Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/uso terapêutico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Vacinas Anticâncer/classificação , Vacinas Anticâncer/imunologia , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Imunoterapia/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor ErbB-2/imunologia
9.
Protein Expr Purif ; 192: 106043, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973460

RESUMO

Antibody-drug conjugates (ADCs) are a major therapeutic tool for the treatment of advanced cancer. Malignant cells in advanced cancer often display multiple genetic mutations and become resistant to monotherapy. Therefore, a therapeutic regimen that simultaneously targets multiple molecules with multiple payloads is desirable. However, the development of ADCs is hampered by issues in biopharmaceutical manufacturing and the complexity of the conjugation process of low-molecular-weight payloads to biologicals. Here, we report antibody mimetic-drug conjugates (AMDCs) developed by exploiting the non-covalent binding property of payloads based on high-affinity binding of mutated streptavidin and modified iminobiotin. Miniprotein antibodies were fused to a low immunogenic streptavidin variant, which was then expressed in Escherichia coli inclusion bodies, solubilized, and refolded into functional tetramers. The AMDC developed against human epidermal growth factor receptor 2 (HER2) effectively killed cultured cancer cells using bis-iminobiotin conjugated to photo-activating silicon phthalocyanine. The HER2-targeting AMDC was also effective in vivo against a mouse KPL-4 xenograft model. This AMDC platform provides rapid, stable, and high-yield therapeutics against multiple targets.


Assuntos
Escherichia coli/metabolismo , Expressão Gênica , Imunoconjugados/genética , Animais , Biotina/administração & dosagem , Biotina/análogos & derivados , Biotina/química , Biotina/genética , Biotina/imunologia , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Dobramento de Proteína , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Estreptavidina/administração & dosagem , Estreptavidina/química , Estreptavidina/genética , Estreptavidina/imunologia
10.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086947

RESUMO

BACKGROUND: Tumorous heterogeneity is a hallmark of tumor evolution and cancer progression, being a longstanding challenge to targeted immunotherapy. Ex vivo armed T cells (EATs) using IgG-(L)-scFv bispecific antibodies (BsAbs) are potent tumor-specific cytotoxic effectors. To improve the anti-tumor efficacy of EATs against heterogeneous solid tumors, we explored multi-antigen targeting approaches. METHODS: Ex vivo expanded T cells were armed with BsAbs built on the IgG-(L)-scFv platform, where an anti-CD3 (huOKT3) scFv was attached to the carboxyl end of both light chains of a tumor specific IgG. Multispecificity was created by combining monospecific EATs, combining BsAbs on the same T cell, or combining specificities on the same antibody. Three multi-antigens targeting EAT strategies were tested: (1) pooled-EATs (EATs each with unique specificity administered simultaneously) or alternate-EATs (EATs each with unique specificity administered in an alternating schedule), (2) dual-EATs or multi-EATs (T cells simultaneously armed with ≥2 BsAbs), and (3) TriAb-EATs (T cells armed with BsAb specific for two targets besides CD3 (TriAb)). The properties and efficiencies of these three strategies were evaluated by flow cytometry, in vitro cytotoxicity, cytokine release assays, and in vivo studies performed in BALB-Rag2-/-IL-2R-γc-KO (BRG) mice xenografted with cancer cell line (CDX) or patient-derived tumor (PDX). RESULTS: Multi-EATs retained target antigen specificity and anti-tumor potency. Cytokine release with multi-EATs in the presence of tumor cells was substantially less than when multiple BsAbs were mixed with unarmed T cells. When tested against CDXs or PDXs, dual-EATs or multi-EATs effectively suppressed tumor growth without clinical toxicities. Most importantly, dual-EATs or multi-EATs were highly efficient in preventing clonal escape while mono-EATs or TriAb- EATs were not as effective. CONCLUSIONS: Multi-EATs have the potential to increase potency, reduce toxicity, and overcome tumor heterogeneity without excessive cytokine release. Arming T cells with multiple BsAbs deserves further exploration to prevent or to treat cancer resistance.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Gangliosídeos/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Receptor ErbB-2/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/biossíntese , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Indian J Pathol Microbiol ; 65(1): 29-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35074962

RESUMO

BACKGROUND: Gastric carcinoma is a major cause of cancer-related morbidity and mortality worldwide. Gastric neoplasms arise from genetic and epigenetic changes in various genes. Present study evaluates the immunoexpression of PTEN, HER2/neu, and Ki-67 in endoscopic gastric carcinoma biopsies and correlates the expression of these proteins with clinicopathological features. MATERIAL AND METHODS: Adequate endoscopic biopsies of 27 cases of gastric carcinoma were evaluated for World Health Organization (WHO) and Lauren's classification subtypes along with HER2/neu, PTEN, and Ki-67 immunoexpression. HER2/neu immunostaining was scored as proposed in the Trastuzumab for gastric cancer (ToGA) trial while PTEN staining and downregulation were assessed using an immunoreactive score. The cut-off for Ki-67 expression was taken as 90th percentile of the values in adjacent non-neoplastic tissue. All statistical analysis was done at 5% level of significance with SPSS v22 statistical software. RESULTS: Tubular adenocarcinoma was the commonest WHO histological subtype and 56% of cases were of intestinal type as per Lauren's classification. 55.6% of cases showed a complete loss of PTEN expression in neoplastic tissue. 17 of the 19 cases with adjacent non-neoplastic tissue showed PTEN downregulation in neoplastic tissue. 81.5% of cases had a high Ki-67 index and HER2/neu overexpression was noted in 36% of cases. All the four cases who died had high Ki-67 proliferation indices; 3 patients had loss of PTEN expression and HER2/neu overexpression. CONCLUSION: We conclude that these immunomarkers can play important role in the behavior of gastric carcinomas and can be targeted for new therapies.


Assuntos
Expressão Gênica , Antígeno Ki-67/genética , PTEN Fosfo-Hidrolase/genética , Receptor ErbB-2/genética , Neoplasias Gástricas/classificação , Neoplasias Gástricas/genética , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/imunologia , Biópsia , Endoscopia Gastrointestinal/métodos , Feminino , Expressão Gênica/imunologia , Humanos , Imunoquímica/métodos , Antígeno Ki-67/imunologia , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/imunologia , Receptor ErbB-2/imunologia , Estômago/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidade , Análise de Sobrevida
12.
Front Immunol ; 13: 1042072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591290

RESUMO

Objective: Besides breast and gastric cancer, HER2 amplification/mutation are also found in lung adenocarcinoma (LUAD). However, the correlation between HER2 variations and the phenotype of immunogenicity and tumor immune microenvironment (TIME) in LUAD compared with breast and gastric cancer has yet to be fully elucidated. Methods: We integrated public databases (discovery set) and internal data (validated set) of 288 patients representing three distinct HER2-altered tumors. Genomic data were used to identify somatic mutations, copy number variations, and calculate tumor mutational burden (TMB) and microsatellite instability score. RNA sequencing was conducted to estimate immune gene signatures and contents of tumor-infiltrating immune cell populations. Finally, IHC was used to determine PD-L1 expression and the tumoral-infiltration of immune cells in 50 HER2-variant tumor specimens with no prior therapeutic regimens. Results: Compared with HER2-amplified breast and gastric cancers, patients with HER2-amplified LUAD showed higher immunogenicity, mainly manifested in immune checkpoints expression and tissue/blood TMB. Additionally, HER2-amplified LUAD exhibited an inflamed TIME with remarkably increased genes encoding HLAs, T-cell activity and immune cell-type, and accompanied with tumor-infiltrating lymphocytes. In LUAD, patients with HER2 amplification possessed higher tissue TMB than HER2 mutation, whereas no difference was observed in PD-L1 expression. HER2 amplification (primary) was associated with significantly higher PD-L1 expression and TMB than acquired HER2 amplification after resistance to EGFR-TKIs. Conclusion: Patients with HER2-amplified LUAD have better immunogenicity and/or an inflamed TIME among HER2-aberrant tumors. Our study may provide clues for establishing the benefits and uses of ICIs for patients with this disease.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Receptor ErbB-2 , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
13.
J Mol Biol ; 434(8): 167412, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34942167

RESUMO

While 20 canonical amino acids are used by most organisms for protein synthesis, the creation of cells that can use noncanonical amino acids (ncAAs) as additional protein building blocks holds great promise for preparing novel medicines and for studying complex questions in biological systems. However, only a small number of biosynthetic pathways for ncAAs have been reported to date, greatly restricting our ability to generate cells with ncAA building blocks. In this study, we report the creation of a completely autonomous bacterium that utilizes 3,4-dihydroxy-L-phenylalanine (DOPA) as its 21st amino acid building block. Like canonical amino acids, DOPA can be biosynthesized without exogenous addition and can be genetically incorporated into proteins in a site-specific manner. Equally important, the protein production yields of DOPA-containing proteins from these autonomous cells are greater than those from cells exogenously fed with 9 mM DOPA. The unique catechol moiety of DOPA can be used as a versatile handle for site-specific protein functionalizations via either oxidative coupling or strain-promoted oxidation-controlled cyclooctyne-1,2-quinone (SPOCQ) cycloaddition reactions. We further demonstrate the use of these autonomous cells in preparing fluorophore-labeled anti-human epidermal growth factor 2 (HER2) antibodies for the detection of HER2 expression on cancer cells.


Assuntos
Engenharia Celular , Di-Hidroxifenilalanina , Escherichia coli , Biossíntese de Proteínas , Anticorpos , Neoplasias da Mama/metabolismo , Di-Hidroxifenilalanina/genética , Di-Hidroxifenilalanina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético , Humanos , Receptor ErbB-2/análise , Receptor ErbB-2/imunologia
14.
Int J Cancer ; 150(1): 164-173, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480368

RESUMO

Checkpoint-blockade therapy (CBT) is approved for select colorectal cancer (CRC) patents, but additional immunotherapeutic options are needed. We hypothesized that vaccination with carcinoembryonic antigen (CEA) and Her2/neu (Her2) peptides would be immunogenic and well tolerated by participants with advanced CRC. A pilot clinical trial (NCT00091286) was conducted in HLA-A2+ or -A3+ Stage IIIC-IV CRC patients. Participants were vaccinated weekly with CEA and Her2 peptides plus tetanus peptide and GM-CSF emulsified in Montanide ISA-51 adjuvant for 3 weeks. Adverse events (AEs) were recorded per NIH Common Terminology Criteria for Adverse Events version 3. Immunogenicity was evaluated by interferon-gamma ELISpot assay of in vitro sensitized peripheral blood mononuclear cells and lymphocytes from the sentinel immunized node. Eleven participants were enrolled and treated; one was retrospectively found to be ineligible due to HLA type. All 11 participants were included in AEs and survival analyses, and the 10 eligible participants were evaluated for immunogenicity. All participants reported AEs: 82% were Grade 1-2, most commonly fatigue or injection site reactions. Two participants (18%) experienced treatment-related dose-limiting Grade 3 AEs; both were self-limiting. Immune responses to Her2 or CEA peptides were detected in 70% of participants. Median overall survival (OS) was 16 months; among those enrolled with no evidence of disease (n = 3), median OS was not reached after 10 years of follow-up. These data demonstrate that vaccination with CEA or Her2 peptides is well tolerated and immunogenic. Further study is warranted to assess potential clinical benefits of vaccination in advanced CRC either alone or in combination with CBT.


Assuntos
Vacinas Anticâncer/uso terapêutico , Antígeno Carcinoembrionário/imunologia , Neoplasias Colorretais/tratamento farmacológico , Células Dendríticas/imunologia , Fragmentos de Peptídeos/uso terapêutico , Receptor ErbB-2/imunologia , Vacinação/métodos , Adulto , Idoso , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Proteínas Ligadas por GPI/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Projetos Piloto , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
15.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34908139

RESUMO

Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único , Anticorpos Monoclonais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Técnicas de Visualização da Superfície Celular , Detecção Precoce de Câncer , Feminino , Humanos , Anticorpos de Domínio Único/genética
16.
Int Immunopharmacol ; 101(Pt B): 108368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857479

RESUMO

Due to the high affinity for binding to target molecules and also other unique attributes, affibodies have a great potential to be used in immunotherapeutic and diagnostic approaches. However, the possibility of undesirable immune response is still a great concern. In the current study, we investigated the possible antigenicity, allergenicity and cytotoxicity of the HER2-targeting affibody ZHER2. The binding affinity of potential epitopes of the affibody to murine major histocompatibility complex (MHC) molecules was investigated by immunoinformatics tools and docking approaches. The possible interaction of ZHER2 with human leukocyte antigens HLA-DP, HLA-DM, HLA-DQ and HLA-DR was also studied by protein-protein docking. Additionally, the synthesized affibody gene was expressed and the protein was purified for boosted immunization of Balb/c mice. Induced secretion of IFN-γ, IL-2, IL-4 and IL-10, and total serum IgG were assessed in the immunized mice. Furthermore, MTT cell viability test was performed to evaluate the cytotoxicity of ZHER2 in splenocytes of the treated mice. In silico analyses showed the possible induction of the immune response by ZHER2. While the affibody could elicit the secretion of cellular immune cytokines, it could not induce a significant humoral response in the treated mice and did not show any cytotoxic effects on the exposed splenocytes. These findings explain the practicability of ZHER2 for therapeutic and in vivo diagnostic usages, though its ubiquitous application may need more studies.


Assuntos
Anticorpos , Mimetismo Molecular , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/imunologia , Alérgenos , Animais , Sobrevivência Celular , Clonagem Molecular , Simulação por Computador , Citocinas/genética , Citocinas/metabolismo , Epitopos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
17.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830027

RESUMO

Breast cancer (BC) is a heterogeneous disease composed of multiple subtypes with different molecular characteristics and clinical outcomes. The metastatic process in BC depends on the transcription factors (TFs) related to epithelial-mesenchymal transition (EMT), including the master regulator Twist1. However, its role beyond EMT in BC subtypes remains unclear. Our study aimed to investigate the role of Twist1, beyond EMT, in the molecular subtypes of BC. In patients, we observed the overexpression of TWIST1 in the HER2+ group. The silencing of TWIST1 in HER2+ BC cells resulted in the upregulation of 138 genes and the downregulation of 174 genes compared to control cells in a microarray assay. In silico analysis revealed correlations between Twist1 and important biological processes such as the Th17-mediated immune response, suggesting that Twist1 could be relevant for IL-17 signaling in HER2+ BC. IL-17 signaling was then examined, and it was shown that TWIST1 knockdown caused the downregulation of leading members of IL-17 signaling pathway. Taken together, our findings suggest that Twist1 plays a role on IL-17 signaling in HER2+ BC.


Assuntos
Neoplasias da Mama/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Interleucina-17/imunologia , Proteínas Nucleares/imunologia , Receptor ErbB-2/imunologia , Transdução de Sinais/imunologia , Proteína 1 Relacionada a Twist/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-17/genética , Proteínas Nucleares/genética , Receptor ErbB-2/genética , Transdução de Sinais/genética , Proteína 1 Relacionada a Twist/genética
19.
J Cell Mol Med ; 25(22): 10638-10649, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34697906

RESUMO

Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER-2). Previous studies have successfully produced single-chain antibodies (scFv) targeting HER-2+ breast cancer; however, scFv have poor stability, easy aggregation and a shorter half-life, which have no significant effect on targeting therapy. Moreover, scFv has been considered as a drug delivery platform that can kill target cells by effector molecules. However, the functional killing domains of immunotoxins are mainly derived from plant or bacterial toxins, which have a large molecular weight, low tissue permeability and severe side effects. To address these concerns, we designed several apoptotic immune molecules to replace exogenous toxins using endogenous apoptosis-related protein DNA fragmentation factor 40 (DFF40) and tandem-repeat Cytochrome c base on caspase-3 responsive peptide (DEVD). Our results suggest that DFF40 or Cytc fusion scFv specifically targets HER-2 overexpressing breast cancer cells (SK-BR-3 and BT-474) rather than HER-2 negative cells (MDA-MB-231 and MCF-7). Following cellular internalization, apoptosis-related proteins inhibited tumour activity by initiating endogenous apoptosis pathways, which significantly reduced immunogenicity and toxic side effects. Therefore, we suggest that immunoapoptotic molecules may become potential drugs for targeted immunotherapy of breast cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Animais , Especificidade de Anticorpos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/genética , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Ordem dos Genes , Humanos , Camundongos , Plasmídeos/genética , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Protein Pept Lett ; 28(11): 1290-1297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602035

RESUMO

BACKGROUND: Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is a recurrent phenomenon during clinical therapy of non-small-cell lung cancer (NSCLC). Studies have shown that HER2 is a key factor contributing to drug resistance in a variety of cancers. Furthermore, we have observed that HER2 is overexpressed in PC-9 NSCLC cells with acquired gefitinib-resistance (PC-9/GR) as compared to that in PC-9 cells. OBJECTIVE: We hypothesized that blocking both EGFR and HER2 may serve as a potential strategy for the treatment of NSCLC with acquired gefitinib-resistance. METHODS: To target both EGFR and HER2 simultaneously, we developed a bispecific antibody HECrossMAb, which was derived from a humanized Cetuximab and Trastuzumab. The binding affinity of HECrossMAb for EGFR and HER2 was measured using an enzyme-linked immunosorbent assay. The MTT assay was used to determine the effect of HECrossMAb on the proliferation of PC-9 and PC-9/GR cells in vitro. Finally, the effect of HECrossMAb on PI3K/AKT signaling and associated transcription factors was measured using western blot analysis. RESULTS: Our results showed that HECrossMAb exerts enhanced cytotoxicity in both PC-9 and PC-9/GR cells by inhibiting the activation of PI3K/AKT signaling and expression of relevant transcription factors such as AEG-1, c-Myc, and c-Fos. CONCLUSION: Our results suggest that HECrossMAb may function as a potential therapeutic agent for treating NSCLC overexpressing EGFR and HER2.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...